M.7.1.4.1. Oranda çokluklardan birinin 1 olması durumunda diğerinin alacağı değeri belirler.
Örneğin 24 TL’ye 3 kg deterjan alınabiliyorsa 1 kg deterjanın 8 TL’ye alınması ), pilav
Tarifinde 2 bardak pirince 3 bardak su konuluyorsa 1 bardak pirince düşen su miktarının 3/2 bardak olması gibi durumlar incelenir.M.7.1.4.2. Birbirine oranı verilen iki çokluktan biri verildiğinde diğerini bulur.
Günlük hayat durumlarına ilişkin örnekler üzerinde çalışmalar yapılır.M.7.1.4.3. Gerçek hayat durumlarını inceleyerek iki çokluğun orantılı olup olmadığına karar verir.
a) İki oran eşitliğinin orantı olarak adlandırıldığı vurgulanır.
b) Doğru orantılı çokluklar ele alınır.
c) Doğru orantı grafiklerine girilmez.M.7.1.4.4. Doğru orantılı iki çokluk arasındaki ilişkiyi ifade eder.
Doğru orantılı çokluklar arasında çarpmaya dayalı bir ilişki olduğu dikkate alınır.
Örneğin bir sınıfta kızların sayısının erkeklerin sayısına oranı 3:5 ise kızların sayısı 3’ün, erkeklerin sayısı
ise 5’in aynı sayı katı olduğu dikkate alınır.
M.7.1.4.5. Doğru orantılı iki çokluğa ait orantı sabitini belirler ve yorumlar.
Verilen gerçek hayat durumları incelenerek orantı sabitini belirlemeye yönelik çalışmalar yapılır.M.7.1.4.6. Gerçek hayat durumlarını inceleyerek iki çokluğun ters orantılı olup olmadığına karar verir.
a) Ters orantılı çoklukların çarpımının sabit olduğunu keşfetmeye yönelik çalışmalara yer verilir.
b) Ters orantı grafiklerine girilmez.
M.7.1.4.7. Doğru ve ters orantıyla ilgili problemleri çözer.
Ölçek, karışım, indirim ve artış gibi durumları içeren problemlere yer verilir.M.7.1.5.1. Bir çokluğun belirtilen bir yüzdesine karşılık gelen miktarını ve belirli bir yüzdesi verilen çokluğun tamamını bulur.
a) %120 gibi %100’den büyük ve %0,5 gibi %1’den küçük yüzdelik ifadelerin anlaşılmasına yönelik
çalışmalara da yer verilir.
b) Bir çokluğun belirtilen bir yüzdesini tahmin etmeye yönelik çalışmalara yer verilir.M.7.1.5.2. Bir çokluğu diğer bir çokluğun yüzdesi olarak hesaplar.
Örneğin 20 sayısı 50’nin %40’ıdır.
M.7.1.5.4. Yüzde ile ilgili problemleri çözer.
M.7.3.1.2. İki paralel doğruyla bir keseninin oluşturduğu yöndeş, ters, iç ters, dış ters açıları belirleyerek özelliklerini inceler; oluşan açıların eş veya bütünler olanlarını belirler; ilgili problemleri çözer.
a) Aynı düzlemde olan üç doğrunun birbirine göre durumları ele alınır.
b) İki doğrunun birbirine paralel olup olmadığına karar vermeye yönelik çalışmalara da yer verilir. Bunu
yaparken doğruların ortak kesenle yaptığı açıların eş olma durumlarından yararlanılabilirM.7.3.2.1. Düzgün çokgenlerin kenar ve açı özelliklerini açıklar.
Yalnızca dışbükey çokgenler incelenir.
M.7.3.2.2. Çokgenlerin köşegenlerini, iç ve dış açılarını belirler; iç açılarının ve dış açılarının ölçüleri toplamını hesaplar.
İç açılar toplamını keşfetmeye yönelik çalışmalara yer verilir.M.7.3.2.4. Eşkenar dörtgen ve yamuğun alan bağıntılarını oluşturur, ilgili problemleri çözer.
M.7.3.2.5. Alan ile ilgili problemleri çözer.
a) Üçgen, dikdörtgen, paralelkenar, yamuk veya eşkenar dörtgenden oluşan bileşik şekillerin alanlarını bulmayı gerektiren problemlere yer verilir.
b) Dikdörtgenin çevre uzunluğuyla alanını ilişkilendirmeye yönelik çalışmalara yer verilir. Aynı alana sahip farklı dikdörtgenlerin çevre uzunlukları ile aynı çevre uzunluğuna sahip farklı dikdörtgenlerin alanları incelenirM.7.3.3.1. Çemberde merkez açıları, gördüğü yayları ve açı ölçüleri arasındaki ilişkileri belirler.
M.7.3.3.2. Çemberin ve çember parçasının uzunluğunu hesaplar.
Merkez açı ile çember parçasının uzunluğu ilişkilendirilirken orandan yararlanmaya yönelik çalışmalara yer verilir.
Hiç yorum yok:
Write yorum